Finding the depth of radioactivity in construction materials

Author:

Joyce Malcolm J.1,Adams Jamie C.1,Heathcote John A.2,Mellor Matthew3

Affiliation:

1. Department of Engineering, Lancaster University, Lancaster, UK

2. Dounreay Site Restoration Ltd (DSRL), Dounreay, Thurso, UK

3. Createc Ltd, Derwent Mills Commercial Park, Cockermouth, UK

Abstract

A key challenge in disposing of nuclear legacy facilities and planning a new nuclear plant is how to assess the extent or likelihood of radioactive contamination in construction materials and the ground. This paper summarises the status of two techniques based on the analysis of emitted radiation from materials that comprise such structures, and describes how this analysis can be used to infer the depth of contamination without the need to penetrate the structure or to destroy it in the process. Two experimental facilities have been developed to test the efficacy of these techniques, and data are provided for the most widespread contaminant experienced in the sector: caesium-137. Finally, the influence on the technique of the likely variety of silica-based media to be encountered in the nuclear industry is described, together with a summary of challenges to be addressed in future research.

Publisher

Thomas Telford Ltd.

Subject

General Energy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Award-winning paper in 2013;Proceedings of the Institution of Civil Engineers - Energy;2015-02

2. Editorial;Proceedings of the Institution of Civil Engineers - Energy;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3