Predicting 1p/19q chromosomal deletion of brain tumors using machine learning

Author:

Çinarer Gökalp1ORCID,Emiroğlu Bülent Gürsel2ORCID,Yurttakal Ahmet Haşim1ORCID

Affiliation:

1. Department of Computer Technologies, Bozok University, Yozgat, Turkey

2. Department of Computer Engineering, Kırıkkale University, Kırıkkale, Turkey

Abstract

Advances in molecular and genetic technologies have enabled the study of mutation and molecular changes in gliomas. The 1p/19q coding state of gliomas is important in predicting pathogenesis-based pharmacological treatments and determining innovative immunotherapeutic strategies. In this study, T1-weighted and T2-weighted fluid-attenuated inversion recovery magnetic resonance imaging (MRI) images of 121 low-grade glioma patients with biopsy-proven 1p/19q coding status and no deletion (n = 40) or co-deletion (n = 81) were used. First, regions of interests were segmented with the grow-cut algorithm. Later, 851 radiomic features including three-dimensional wavelet preprocessed and non-preprocessed ones were extracted from six different matrices such as first order, shape and texture. The extracted features were preprocessed with the synthetic minority over-sampling technique algorithm. Next, the 1p/19q decoding states of gliomas were classified using machine-learning algorithms. The best classification in the classification of glioma grades (grade II and grade III) according to 1p/19q coding status was obtained by using the logistic regression algorithm, with 93.94% accuracy and 94.74% area under the curve values. In conclusion, it was determined that non-invasive estimation of 1p/19q status from MRI images enables the selection of effective treatment strategies with early diagnosis using machine-learning algorithms without the need for surgical biopsy.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INTERNET OF THINGS BOTNET DETECTION VIA ENSEMBLE DEEP NEURAL NETWORKS;International Journal of 3D Printing Technologies and Digital Industry;2023-08-31

2. Comprehensive Analysis of Resampling Methods on Ensemble Learning for Credit Card Fraud Detection;Afyon Kocatepe University Journal of Sciences and Engineering;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3