Advanced machining of TiNiCo shape memory alloys for biomedical applications

Author:

Hargovind Soni1ORCID,Narendranath Sannayellappa1ORCID,Ramesh Motagondanahalli Rangarasaiah1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Mangalore, India

Abstract

Wire electro discharge machining (WEDM) is one of the most productive non-traditional machining processes. Complex shapes can be cut through the WEDM process. In the present study, attempts have been made to study the effects of various process parameters of WEDM such as pulse on time (T on), pulse off time (T off), servo voltage (SV), wire speed (WS) and servo feed (SF) on the material removal rate (MRR) and surface roughness (SR) for machining of TiNiCo shape memory alloys, traditionally used as bone staple material. Grey-relational-analysis-based entropy measurement methods were used for formulating a hybrid combination of optimisation methods, in order to investigate the input parameters of WEDM on the comprehensive performance of a bone staple material’s SR and MRR. Experiments were carried out by using response surface design (L-33), and the input parameters were ranked based on the grey relational grade. An experimental run was conducted using the optimal combination of input parameters of WEDM, which was obtained from the analysis. T on of 125 μs, T off of 42 μs, SV of 40 V, SF of 2180 machine units and WS of 4 m/min were obtained as the best combination of input process parameters for TiNiCo alloy.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3