Development of carboxymethylcellulose based composites for bone tissue engineering

Author:

Priya Ganesan1,Kumar Uttamchand Narendra2,Madhan Balaraman3,Manjubala Inderchand1

Affiliation:

1. Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India

2. Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

3. Center for Academic and Research Excellence, CSIR–Central Leather Research Institute, Chennai, India

Abstract

The present study focuses on the development of carboxymethylcellulose (CMC)–biphasic calcium phosphate (BCP) composite scaffolds through the freeze-drying process for bone tissue engineering applications. Citric acid or fumaric acid was added as the cross-linker of CMC to improve the stability of composite scaffolds. The effect of change in freezing temperature (−20, −40 or −80°C) on the pore morphology, swelling ability and mechanical properties of composite scaffolds was studied. Cross-linked scaffolds showed an increased thermal degradation temperature compared with non-cross-linked scaffolds. All the composite scaffolds showed a porous structure with homogeneous blending of CMC and BCP. Cross-linked scaffolds showed appreciable swelling ability and stability in phosphate-buffered saline, while non-cross-linked scaffolds were unstable for 24 h. Cross-linked scaffolds had lower compressive strength than non-cross-linked scaffolds under dry conditions. However, in the hydrated state, only citric acid-cross-linked scaffolds were stable with improved compressive strength of 64 ± 4, 57 ± 4 and 67 ± 4 kPa when processed at −20, −40 and −80°C, respectively. Furthermore, three-dimensional culture of Saos-2 cells on citric acid-cross-linked scaffolds showed their suitability for cell proliferation and osteogenic differentiation. Therefore, citric acid-cross-linked CMC–BCP composite scaffolds may be promising scaffolds for bone tissue engineering applications.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3