Long-term heat storage opportunities of renewable energy for district heating networks

Author:

Hansen Kristian Emil Schrøder1,Xydis George2

Affiliation:

1. Department of Business Development and Technology, Aarhus University, Herning, Denmark

2. Department of Business Development and Technology, Aarhus University, Herning, Denmark (corresponding author: )

Abstract

This study compares different thermal heat storage solutions existing in the market, fuelled with energy from different renewable energy sources with a focus on integrating thermal heat storage into the district heating grid. The paper is based on a case in the municipality of Silkeborg, Denmark, which has the largest solar thermal panel plant in Northern Europe. A theoretical approach was used to compare with assumed excess power from wind and solar in the DK1 area, with Silkeborg's allocated excess power at 0.01%. This yielded overall efficiencies between η = 0.739–0.765 and η = 0.864–0.895 for the Silkeborg solar thermal plant. Four different thermal heat storage solutions were compared: tank thermal energy storage, pit energy storage, aquifer thermal energy storage and borehole energy storage (BTES). The analysis showed that, of the four solutions compared, BTES was the best for storing thermal energy for a longer period of time, with the lowest heat loss rate of 0.6% and the highest efficiency of up to 89.5%. However, some complications make it difficult to establish a BTES storage solution, since it is very much dependent on earth conditions and initial capital.

Publisher

Thomas Telford Ltd.

Subject

General Energy,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal conductivity of an external wall with a simulated smart aerogel insulation system;Proceedings of the Institution of Civil Engineers - Engineering Sustainability;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3