Smart gel system of Linum usitatissimum mucilage as a vehicle of an ophthalmic drug

Author:

Noreen Sobia1,Arshad Mahira1,Ghumman Shazia Akram2,Noureen Shazia1,Malik Muhammad Zubair2,Bukhari Syed Nasir Abbas3

Affiliation:

1. Department of Chemistry, University of Sargodha, Sargodha, Pakistan

2. Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan

3. Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Sakaka, Saudi Arabia

Abstract

Smart gel systems involve the utilization of the rapid sol–gel phase transition of an ocular solution in the cul-de-sac of eye in response to physicochemical stimuli. The current investigative scheme has been designed to formulate and assess a smart in situ gelling system of a quinolone antibiotic (ofloxacin) in combination with biodegradable polymers: Linum usitatissimum mucilage (LUM) and sodium alginate. The medicated formulations were clear and isotonic in the pH range 5·57–6·23 and converted into gel in the presence of simulated lachrymal fluid. The formulations were scrutinized through content uniformity, gelling capacity and rheological parameters and in vitro diffusion studies. The formulations were characterized by ultraviolet–visible and Fourier transform infrared spectroscopy for unveiling of the chemical interactions and preliminary structural elucidation. Sterility and stability, antibacterial and eye safety tests using in vitro and in vivo models proved that the optimized formulation (F2) is stable, therapeutically efficacious and non-irritant and provides complete and sustained release of the drug over a 12 h period in a predetermined manner. The data obtained thus suggest that a novel in situ gel system can be successfully designed by using biodegradable polymers for sustained ofloxacin delivery, leading toward the goal of a viable alternate ophthalmic medicine.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3