Engineering performance of lightweight geomaterial influenced by EPS density and mix ratio

Author:

Pande Anupam Yogendra1ORCID,Padade Amit Harihar1ORCID

Affiliation:

1. Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur, India

Abstract

This paper highlights the engineering behavior of an expanded-polystyrene (EPS)-bead-based fly ash geomaterial (FAGM). The proposed geomaterial was prepared by blending EPS beads of different densities and fly ash contents with cement as a binding agent. The effects of three different EPS bead densities (25, 30 and 35 kg/m3), four EPS mix ratios (0.5–2.0%) and two cement contents (15 and 20%) on density, compressive strength at three different curing periods, 7, 28 and 90 days; and elasticity modulus were studied. It was concluded that the behavior of FAGM prepared with low-density and low-content EPS is analogous to that of FAGM prepared with high-density and high-content EPS. To evaluate the performance of FAGM as a lightweight and strong material, an empirical ratio of strength to density is defined. FAGM with low-density and high-content EPS can be used as an efficient lightweight filling material, whereas FAGM with high-density and low-content EPS can be used as a strong filling material. Moreover, the geomaterial, which is mainly formed from a freely available industrial byproduct, can be strongly used as a replacement for EPS geofoam blocks.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3