Impact of solution chemistry on morphology of enzyme-induced calcium carbonate precipitate

Author:

Thirumalairaju Aishwarya1,Juneja Ashish1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India

Abstract

Enzyme-induced calcium carbonate precipitation (EICP) through the urea hydrolysis pathway has been widely studied for various applications. The EICP solution comprises urea, a calcium source (usually calcium chloride) and the enzyme urease. This study addressed the effect of the chemical concentration of the EICP solution on the morphology of the calcium carbonate product. This was achieved by varying the concentration of urea–calcium chloride and urease activity. The duration of the reaction was the third variable. The precipitation efficiency and the interface shearing resistance were reported. Precipitation efficiency decreased as the concentration of urea–calcium chloride reached beyond 0.75 mol/l. The calcium carbonate polymorph was predominantly calcite. Its crystal size and shape did, however, vary, depending on the precipitation conditions. The findings showed that the urease activity promoted the formation of rhombohedral calcite in the presence of adequate calcium ions and urea. Spherical calcite was formed when the urease activity was further increased. The morphology of calcite evolved from a single, uniform, smooth spherical crystal to a polycrystalline formation with orthorhombic protrusions. The crystals tended to grow as the reaction time increased, resulting in aggregation, when the urease levels crossed 30 kU/l. It was noted that spherical crystals exhibited stronger interface shearing resistance than rhombohedral crystals.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3