Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation

Author:

Nian Ting-kai1ORCID,Song Xiao-long1,Zhao Wei1,Jiao Hou-bin1,Guo Xing-sen1

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China

Abstract

The dissociation of gas hydrates can increase pore pressures greatly, thereby causing the shallow layers of submarine slopes to fail. Given the high failure risk of shallow subsea soils, it is important to understand the stratum response mechanisms after hydrate dissociation. In this paper, submarine slope failure triggered by overpressure fluid associated with gas hydrate dissociation is investigated in laboratory experiments. A two-layer geological model is built based on actual geological data, and pressurised air is injected into the model to simulate the overpressure fluid. The pore pressures, surface displacements and internal deformations of soils are measured and compared under different conditions, and their evolution processes are analysed for various parameter values. The results show that the accumulation of pore pressure increases with the thickness of the soil layer and leads to layered fractures. The failure pattern can be generalised into two types: (a) disc-shaped failure and (b) penetration failure. In disc-shaped failure, a major failure occurs when the shear stress reaches the shear strength, whereas tensile fracturing is a major effect in penetration failure. This achievement is very important for a deep understanding of submarine landslides induced by overpressure fluid, as well as for risk assessments of ocean engineering sites.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3