Affiliation:
1. Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
2. Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Subject
General Engineering,Biomaterials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献