Modelling of flow around hexagonal and textured cylinders

Author:

Karampour Hassan1ORCID,Wu Zhuolin2,Lefebure Julien3,Jeng Dong-Sheng4,Etemad-Shahidi Amir5,Simpson Benjamin6

Affiliation:

1. Senior Lecturer, Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia (corresponding author: )

2. PhD student, Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia

3. Undergraduate student, ENSTA ParisTech, Paris, France

4. Professor, Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia

5. Senior Lecturer, Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia; Senior Lecturer, School of Engineering, Edith Cowan University, Joondalup, WA, Australia

6. Senior Lecturer, Griffith School of Engineering, Griffith University, Gold Coast, QLD, Australia

Abstract

The flow regime around a hexagonal polygon with low Reynolds numbers Re < 200 is numerically investigated in two different orientations namely face- and corner oriented. The basic flow characteristics, including drag coefficient, lift coefficient, Strouhal number and critical Reynolds number of the hexagonal cylinders, are calculated by solving the Navier–Stokes and mass conservation (continuity) equations, using the Simple (semi-implicit method for pressure-linked equations) algorithm. Within the studied range of Re, the predicted lift coefficient and Strouhal number of the face-oriented hexagon were higher than those of the corner-oriented hexagon. In contrast, the predicted drag coefficient and critical Reynolds number of the corner-oriented hexagon were greater than those of the face-oriented one. Flow characteristics of a novel textured geometry are also studied using three-dimensional transient analysis. The Strouhal number St of the textured geometry was found to be in between the St of both the hexagonal cylinders, and its lift coefficient is lower than that of the hexagonal cylinders. The computational fluid dynamics results show that, within the studied Reynolds number range, the drag coefficient of the textured pipe is almost equal to that of the circular cylinder while its lift coefficient is substantially smaller than that of circular and face- and corner-oriented hexagon pipes.

Publisher

Thomas Telford Ltd.

Subject

Mechanics of Materials,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3