Greenfield tunnelling in sands: the effects of soil density and relative depth

Author:

Franza A.1ORCID,Marshall A. M.2ORCID,Zhou B.3

Affiliation:

1. Department of Engineering, University of Cambridge, UK; Formerly, Faculty of Engineering, University of Nottingham, UK

2. Faculty of Engineering, University of Nottingham, UK.

3. Formerly, Faculty of Engineering, University of Nottingham; now Shanghai Civil Engineering Co., Ltd of China Railway Group Ltd, Shanghai, P. R. China.

Abstract

Tunnel construction is vital for the development of urban infrastructure systems throughout the world. An understanding of tunnelling-induced displacements is needed to evaluate the impact of tunnel construction on existing structures. Recent research has provided insight into the complex mechanisms that control tunnelling-induced ground movements in sands; however, the combined influence of relative tunnel depth and soil density has not been described. This paper presents data from a series of 15 plane-strain centrifuge tests in dry sand. The cover-to-diameter ratio, C/D, of the tunnels ranges between 1·3 and 6·3, thereby including relatively shallow and deep tunnels. The sand relative density varies between 30 and 90%, corresponding to loose and dense soils. The effects of C/D, soil density and volume loss on vertical and horizontal soil movements, shear strains and ground reaction curves are discussed. Analysis of surface and subsurface settlement trough characteristics shows that the mechanisms are non-linear and the effects of soil relative density and volume loss on deformation patterns are highly dependent on C/D. The role of soil arching in the definition of the displacement mechanisms and a discussion of the implications of the results to the assessment of damage to existing structures are also provided.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3