Ageing and cyclic behaviour of axially loaded piles driven in chalk

Author:

Buckley R. M.1ORCID,Jardine R. J.2,Kontoe S.2,Parker D.2,Schroeder F. C.3

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, London, UK.

2. Department of Civil and Environmental Engineering, Imperial College London, London, UK

3. Geotechnical Consulting Group LLP, London, UK.

Abstract

This paper reports a programme of static and cyclic loading tests on seven open steel tubes driven in low- to medium-density chalk at a well-characterised test site, describing their response to driving, ageing in situ and loading under both static and cyclic conditions. Back analysis of dynamic monitoring identifies the distributions of notably low shaft resistances that develop during installation, showing that these depend strongly on the relative pile tip depth (h/R). The shaft capacities available to ‘virgin’ piles are shown to increase markedly after driving, following a hyperbolic trend that led to a fivefold gain after 250 days. Pre-failed piles do not follow the same trend when re-tested. Pile exhumation confirmed that driving remoulded the chalk, creating a puttified zone around the shaft. Excess pore water pressure dissipation, which is likely to have been rapid during and after driving, led to markedly lower water contents close to the shaft. Axial cyclic testing conducted around 250 days after driving led to a range of responses, from manifesting stable behaviour over 1000 cycles to failing after low numbers of cycles after developing sharp losses of static capacity. The dependence of permanent displacement on the cyclic loading parameters is explored and characterised. The experiments provide the first systematic study of which the authors are aware into the effects of undisturbed ageing and cyclic loading on previously unfailed piles driven in chalk. Potential predictive tools may now be tested against the reported field measurements.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3