An effective stress framework for estimating penetration resistance accounting for changes in soil strength from maintained load, remoulding and reconsolidation

Author:

Zhou Z.1ORCID,White D. J.1,O'Loughlin C. D.1

Affiliation:

1. Centre for Offshore Foundation Systems and ARC Research Hub for Offshore Floating Facilities, University of Western Australia, Perth, WA, Australia.

Abstract

Some offshore foundations are subjected to intermittent episodes of remoulding and reconsolidation during installation and operational processes. The maintained and cyclic loads, and subsequent reconsolidation processes, cause changes in the geotechnical capacity, particularly in soft clays. This changing capacity affects the in-service behaviour, including changes to the safety margin, the extraction resistance, the stiffness and structural fatigue rates and also the overall system reliability. This paper provides a new analysis framework to capture these effects, based on estimation of the changing soil strength. The framework is developed using critical state concepts in the effective stress domain, and by discretising the soil domain as a one-dimensional column of soil elements. This framework is designed as the simplest basis on which to capture spatially varying changes in strength due to maintained and cyclic loads, and the associated remoulding and reconsolidation processes. The framework can be used to interpret cyclic penetrometer tests, as well as foundation behaviour. This provides a basis for the approach to be used in design, by scaling directly from penetrometer tests to foundation behaviour. Centrifuge tests are used to illustrate the performance of this approach. The penetration resistance during cyclic T-bar penetrometer tests and spudcan footing installation with periods of maintained loading and consolidation is accurately captured. The framework therefore provides a basis to predict the significant changes in penetration resistance caused by changing soil strength, and can bridge between in situ penetrometer tests and design assessments of soil–structure interaction.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3