Effect of in situ water content variation on the spatial variation of strength of deep cement-mixed clay

Author:

Liu Y.1,He L. Q.2,Jiang Y. J.3,Sun M. M.4,Chen E. J.5,Lee F.-H.2

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, P. R. China.

2. Department of Civil and Environmental Engineering, National University of Singapore, Singapore.

3. Ed Zublin AG, Singapore Branch – Pipejacking Division, Singapore.

4. Department of Civil Engineering, Zhejiang University City College, Hangzhou, P. R. China.

5. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, P. R. China (corresponding author).

Abstract

This paper examines the interaction between the spatial variations in binder concentration (i.e. cement slurry concentration) and in situ water content, in cement-mixed soil, using field and model data as well as statistical analysis and random field simulation. The field data are first analysed to shed light on the spatial variation in the in situ water content, including its scale of fluctuation. A statistical model is then developed which takes into account the variation in binder concentration and in situ water content. This leads to a two-parameter model for the prediction of the mean, variance and probability distribution function of the strength of the cement-treated soil. The scale of fluctuation for the variation in binder concentration arising from imperfect mixing within a cement-mixed column is then examined using centrifuge model data. This indicates that the scale of fluctuation in binder concentration is much shorter in range than that of the in situ water content. The combined effect of these two scales of fluctuation is then studied by simulating the resulting random field using Monte-Carlo simulations. This indicates that the size of the sampling region has a significant effect on the scale of fluctuation that is captured. If the sampling region is of a similar size to the column diameter, the measured scale of fluctuation reflects that of the binder concentration. As the size of the sampling region increases, so does the measured scale of fluctuation. This explains the wide range of scales of fluctuation that have been reported for cement-treated soil. To capture both scales of fluctuation in core sampling, some boreholes should be sunk at close spacings of less than a column diameter, in order to capture short-range variation.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3