Effects of fibre additions on the tensile strength and crack behaviour of unsaturated clay

Author:

Wang Jianye1ORCID,Hughes Paul N.2ORCID,Augarde Charles E.3ORCID

Affiliation:

1. Research Associate, School of Architecture, Planning and Landscape, Newcastle University, Newcastle, UK (corresponding author: )

2. Associate Professor, Department of Engineering, Durham University, Durham, UK

3. Professor, Department of Engineering, Durham University, Durham, UK

Abstract

Desiccation cracking in clay soils is a combined mechanical and hydraulic problem and such soils can be improved by various methods including reinforcement with fibres. The relationships between tensile strength, cracking resistance and water-retention properties of fibre-reinforced fine-grained soils lack coverage in the literature to date. In this study, these three properties are evaluated and connected by way of a series of tensile strength and desiccation cracking tests on fibre-reinforced London clay. The results confirm that increased fibre addition delays the occurrence of peak stress and changes failure behaviour from brittle to ductile. The tensile strength increment gets higher as water content decreases, and reaches a maximum value of 460 kPa when the water content is 12%. The crack intensity factor reduces from 7.20% to 0.89% when 12 mm long fibre is used at a ratio of 0.9%. Fibre reinforcement also changes the crack development pattern by reducing the size of large cracks and increasing the proportion of small individual cracks. However, the presence of fibres was not observed to change the water-retention properties of the soil, indicating that the tensile improvement comes from the pull-out resistance of the fibres rather than suction changes.

Publisher

Thomas Telford Ltd.

Subject

Mechanics of Materials,Soil Science,Geotechnical Engineering and Engineering Geology,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3