Assessment of alkali-induced heave in soil and its stabilisation using slag

Author:

Mandal Manish Kumar1ORCID,Paramkusam Bala Ramudu2ORCID

Affiliation:

1. Research scholar, Department of Civil Engineering, Indian Institute of Technology (B.H.U), Varanasi, India

2. Associate Professor, Department of Civil Engineering, Indian Institute of Technology (B.H.U), Varanasi, India (corresponding author: )

Abstract

Soil–alkali-interaction results in unexpected heaving and other negative effects of soil properties, which can lead to complete failure of structures. An investigation was carried out on the impact of highly concentrated sodium hydroxide alkali on the heaving behaviour of low-plasticity clay. The effect of ground-granulated blast-furnace slag as a stabiliser for alkali-interacted soil was also investigated. The interaction of alkali with the soil showed heaving up to 5.25% after 30 days, while a slag content of 20% showed maximum suppression of heave. The alkali-interacted soil stabilised with slag was also compared with un-interacted soil mixed with slag. There was a marginal increase in friction angle with an increase in curing period, and a significant increase in cohesion for both. A substantial improvement in unconfined compressive strength was also evident with increased slag content and curing period. The results were supported by microstructural examinations. The application of slag as a liquid-based stabiliser for alkali-interacted soil was also conducted using electrokinetics. Statistical analysis indicated that the curing period was a dominant parameter in affecting the compressive strength of un-interacted soil while, for alkali-interacted soil, slag content was more dominant.

Publisher

Thomas Telford Ltd.

Subject

Mechanics of Materials,Soil Science,Geotechnical Engineering and Engineering Geology,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fourier calculus from intersection theory;Physical Review D;2024-05-30

2. Editorial;Proceedings of the Institution of Civil Engineers - Ground Improvement;2023-09

3. Intersection numbers from higher-order partial differential equations;Journal of High Energy Physics;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3