Site characterisation for improved assessment of contaminant fate in fractured aquifers

Author:

Thornton S. F.1,Wealthall G. P.2

Affiliation:

1. Groundwater Protection and Restoration Group, Kroto Research Institute, University of Sheffield UK

2. British Geological Survey Keyworth, Nottingham, UK

Abstract

A methodology for the improved characterisation of organic contaminant fate in fractured aquifers is presented. Using rotary cored boreholes, the methodology combines borehole logging techniques (caliper, gamma, resistivity, digital televiewer logs) and hydraulic testing (1–2m straddle-packers) with real-time on-site measurement of aquifer lithology, fracture and contaminant distribution in rock core and groundwater samples. The ensemble data are integrated to interpret the fracture network properties, aquifer hydraulic properties and contaminant distribution in vertical profile, which identifies hydraulically significant fractures, vertical flow components and preferential transport pathways supporting the design of a network of level-specific multilevel groundwater sampler monitoring wells. A key feature is the use of discrete-zone monitoring for site characterisation and long-term groundwater quality monitoring, to provide representative data on the spatial and temporal variation in aquifer hydraulic properties and hydrochemistry. This methodology is a cost-effective improvement on current site characterisation practice for fractured aquifers, providing more reliable assessment of contaminant transport and biodegradation processes, peak contaminant concentrations, plume geometry and behaviour for the development and validation of robust conceptual site models. This investment ultimately reduces long-term site management costs owing to less uncertainty in risk assessment and greater confidence in the targeting of more effective remediation. The methodology is demonstrated for the assessment of monitored natural attenuation at a site on the Chalk aquifer contaminated by a release of unleaded petroleum fuel.

Publisher

Thomas Telford Ltd.

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3