Grid dependence of k–ε model for oscillatory boundary layers

Author:

Ghumman A. R.1,Sana A.2,Tanaka H.3

Affiliation:

1. Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan

2. Department of Civil and Architectural Engineering, Sultan Qaboos University, Al-Khod, Muscat, Sultanate of Oman

3. Department of Civil Engineering, Tohoku University, Aoba, Sendai, Japan

Abstract

The low Reynolds number k–ε model is used in some commercial hydrodynamic models to determine boundary layer properties. Such models have been found to produce grid-dependent solutions. A reliable engineering estimate of fundamental boundary layer properties is of utmost importance for practicing engineers. Here, the effect of grid spacing in four different versions of the low Reynolds number k–ε model is studied using direct numerical simulation data of a one-dimensional sinusoidal oscillatory boundary layer. A detailed comparison is made for cross-stream velocities, turbulent kinetic energy, bottom shear stress, friction factor and phase difference. For the present data, the limiting value of the distance to the first grid point from the wall is expressed in terms of Stokes layer thickness. It is observed that, in order to predict the boundary layer properties with reasonable accuracy, the first grid point should be placed at a distance of about 0·02 times the Stokes layer thickness from the wall. The results of the present study may be useful for practicing engineers and researchers in their choice of appropriate grid spacing for low Reynolds number k–ε models.

Publisher

Thomas Telford Ltd.

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Water Management;2009-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3