Numerical investigation of railway transition zones stiffened with auxiliary rails

Author:

Esmaeili Morteza1,Heydari-Noghabi Hamidreza2,Kamali Mehdi3

Affiliation:

1. Associate Professor, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran (corresponding author: )

2. PhD student, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

3. MSc student, School of Railway Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Culverts and bridges are the most common areas on railway lines where abrupt changes of track stiffness can occur. Using auxiliary rails in the transition zone is one option for gradually increasing track stiffness. The study reported in this paper investigated this issue by means of finite-element modelling. A ballasted track with a concrete culvert on the Tehran–Isfahan high-speed railway line in Iran was modelled and the effect of installing auxiliary rails in the transition zone was investigated. The ballasted track and its components – including railpads, ballast and subgrade – were modelled as a series of mass–spring–damper systems, while the sleepers and culvert were simulated using Euler–Bernoulli beam elements. The dynamic behaviour of the track and its components was investigated by simulating loads moving at different speeds. The results indicated there was a reduced variation in rail deflections, track accelerations and railpad forces, demonstrating that auxiliary rails improve the dynamic performance and behaviour of transition zones.

Publisher

Thomas Telford Ltd.

Subject

Transportation,Civil and Structural Engineering

Reference23 articles.

1. Behaviour of train–track interaction in stiffness transitions

2. Coelho BE (2010) Dynamics of Railway Transition Zones in Soft Soils. MSc thesis, Delft University of Technology, Delft, the Netherlands.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3