Cyclic stress–strain response of compacted gravel

Author:

MODONI G.,KOSEKI J.,ANH DAN L.Q.

Abstract

The positive effect of artificial densification on the stress–strain performance of granular materials is acknowledged from very ancient times but its importance greatly increased after the development of powerful machineries for the construction of large earth and rockfill dams. It is, however, pointed out that the extensive exploitation of gravelly soil is rarely supported by a thorough analytical assessment of the compaction effects on the constitutive relationships of materials, as would be desirable considering the massive dimension of these works and the complexity of typical loading conditions. The present research aims to fill this gap by means of a detailed experimental investigation and a theoretical analysis on the stress–strain response of dense gravels under monotonic and cyclic loading. The experimental campaign consists of a large number of triaxial tests performed at different initial mean effective stresses, following different stress paths and sequences, on artificially reconstituted samples of large dimensions compacted at different initial densities. The great care placed in the accuracy of laboratory instrumentation enables a high repeatability of experimental results, which is necessary to provide a clear focus on non-linearity in the limited strain range of the pre-failure response of the gravel. Based on the curve-fitting method the ingredients of an elasto-plastic constitutive model have been defined to predict the response of gravel under monotonic and cyclic loading. Elastic stiffness is simulated with a model derived from the literature which assumes a dependency on soil density together with inherent and stress-induced anisotropy. Plastic strain development from different initial stress and volume states of gravel is simulated by a critical state, multiple yielding constitutive model. Hardening and flow rules for the latter have been obtained by modifying previously existing laws in order better to reproduce the observations under monotonic compression, extension and cyclic loading. Validation of the proposed model is finally provided by comparing simulations and experimental results in a variety of testing conditions.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference55 articles.

1. Effects of Large Number of Cyclic Loading on Deformation Characteristics of Dense Granular Materials

2. ASTM (American Society for Testing and Materials). Density and unit weight of soil in place by rubber baloon method, 1984, ASTM, West Conshohocken, PA, 285–288, annual book of ASTM Standards, Designation 2167.

3. ASTM (American Society for Testing and Materials). Laboratory compaction characteristics of soil using standard effort, 1991, ASTM, West Conshohocken, PA, 165–172, annual book of ASTM Standards, Designation 698.

4. Balakrishnaiyer K. Modelling of deformation characteristics of gravel subjected to large cyclic loading. PhD thesis, 2000, Institute of Industrial Science, University of Tokyo, Japan.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3