Affiliation:
1. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester UK
Abstract
Owing to its high thermal conductivity, exposed structural steel will increase in temperature very quickly during a fire, losing strength and stiffness. Designers must ensure that steel-framed buildings maintain sufficient stability, for a reasonable period of time, should a fire occur. A number of design approaches are available, of varying complexity, to ensure adequate fire safety. This paper explains the available design methods, including recent innovative approaches, ranging from the simple prescriptive approach of ‘blindly’ covering all exposed areas of steel with fire protection to carrying out a performance-based approach where the likely fire severity, heat transfer and structural response are considered. The advantages and disadvantages are summarised for each of the design methods described, allowing the optimum solution for individual projects to be determined.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献