Strengthening RC beam–column connections with FRP strips

Author:

Shrestha R.1,Smith S. T.2,Samali B.1

Affiliation:

1. Centre for Built Infrastructure Research, Faculty of Engineering and Information Technology, University of Technology Sydney, Australia

2. Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, China

Abstract

Reinforced concrete connections, designed prior to the implementation of earthquake design standards, may be vulnerable to shear failure during a seismic attack. Addition of externally bonded fibre-reinforced polymer (FRP) composites can enhance not just the shear capacity but the deformation and energy absorption capacity of the connection. The majority of research studies to date have opted for complete or near-complete coverage of the joint region with FRP and have subjected the test specimens to cyclic (push–pull) loading. Such strengthening schemes and method of loading make it quite difficult to accurately monitor and hence understand the behaviour of the FRP and the concrete beneath. This paper presents results of a series of tests on the strengthening of shear deficient connections with FRP strips subjected to either cyclic or monotonic loading with the primary motivation being accurate description of the behaviour of the FRP. The tests also enable the failure modes to be more accurately reported and classified especially due to the use of monotonic loading. An analytical model is finally presented which accurately describes the mechanics of the FRP strengthening with the model predictions correlating reasonably well with the test data.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3