Double-structure effects on the chemo-hydro-mechanical behaviour of a compacted active clay

Author:

MUSSO G.,ROMERO E.,VECCHIA G.DELLA

Abstract

This work presents an insight into double-structure effects on the coupled chemo-hydro-mechanical behaviour of a compacted active clay. In the first part, selected pore size distribution curves are introduced, to highlight the influence of solute concentration on the evolution of the microstructure of compacted samples. An aggregated structure with dual-pore network is induced by compaction even at relatively high water contents. This structural arrangement is enhanced by salinisation, and has a notable influence on transient volume change behaviour – that is, the occurrence of different stages of swelling upon pore water dilution and higher volume change rates upon salinisation. A coupled chemo-hydro-mechanical model, taking into consideration double-structural features from a chemo-mechanical viewpoint, is described and then used to interpret these behavioural responses and present complementary information on local transient processes. The model is designed to identify an intra-aggregate and an inter-aggregate domain, and assigns different values of hydraulic pressure and osmotic suction to each domain. Distinct constitutive laws for both domains are formulated, and the flow of salt and water between the two domains is accounted for by a physically based mass exchange term. The model is used to simulate salt diffusion tests run in an oedometer at constant vertical stress. Parameters used in the formulation are calibrated based on separate experimental evidence, both through direct test results and through back-analyses of laboratory experiments.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3