Environmental degradation of claystones

Author:

PINEDA J.A.,ALONSO E.E.,ROMERO E.

Abstract

The paper presents the results of a comprehensive experimental programme carried out to study the effects of relative humidity cycling on the degradation of argillaceous rocks. Lilla claystone, a low-porosity Tertiary rock, was used for this purpose. Four aspects were analysed: (a) the influence of the number of relative humidity cycles; (b) the amplitude of relative humidity cycles; (c) the stress level; and (d) the effects of using liquid water or vapour during wetting paths. The application of relative humidity cycles induced a progressive degradation of the rock in terms of accumulative irreversible volumetric swelling, irreversible reduction in rock stiffness, and tensile strength. The irreversible expansion increased with the amplitude of the relative humidity change. However, it reduced with increase of the confining pressure. This irreversible behaviour accelerated when liquid water was used during the wetting paths. Microstructural analysis has shown that the degradation pattern of Lilla claystone was associated mainly with fissuring, as a consequence of non-uniform deformations of the clayey matrix. This phenomenon leads to the opening of fissures at the weaker interfaces of the clayey matrix with detrital, non-active minerals. A damage law derived in terms of the accumulated volumetric irreversible strain has been proposed to represent the progressive loss in volumetric and shear stiffness as well as the tensile strength.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3