Dynamic installation and monotonic pullout of a torpedo anchor in calcareous silt

Author:

HOSSAIN M.S.,O'LOUGHLIN C.D.,KIM Y.

Abstract

Challenges associated with dynamically installed anchors include prediction of the anchor embedment depth, which dictates the anchor's holding capacity. This is particularly true for calcareous sediments, as very little performance data exist for this anchor type in these soils. This paper reports results from a series of model tests undertaken to provide insight into the behaviour of a torpedo anchor during dynamic installation and monotonic pullout in lightly overconsolidated calcareous silt. The tests were carried out in a beam centrifuge, varying the drop height and consequently the impact velocity, and the consolidation period prior to anchor pullout. The mudline load inclination was also varied to encompass various mooring configurations. The centrifuge model test data were used to calibrate: (a) an analytical dynamic embedment model, based on conventional bearing and frictional resistance factors but with strain-rate-dependent undrained shear strength for the soil; and (b) an analytical quasi-static vertical pullout capacity model, accounting for reverse end bearing and frictional resistance. A total energy based expression, appropriate for calcareous silts, was proposed for predicting anchor embedment depth for a given anchor geometry, mass and impact velocity. For assessing anchor vertical holding capacity, a piezocone based direct design approach was also proposed, deriving anchor end bearing and frictional resistance from cone tip resistance and sleeve friction, respectively. Anchor capacity under inclined loading was presented as failure envelopes expressed in terms of dimensionless vertical and horizontal components of anchor net resistance, which agreed well with a finite-element based envelope developed for embedded foundations. The regain of anchor capacity was found to be in good agreement with predictions based on the cavity expansion framework.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3