Life-cycle costing of metallic structures

Author:

Gardner L.1,Cruise R. B.2,Sok C. P.3,Krishnan K.4,Ministro Dos Santos J.5

Affiliation:

1. Imperial College London UK

2. University of Bath UK

3. Building and Construction Authority Singapore

4. DNV Energy UK

5. Mott MacDonald UK

Abstract

Structural material selection has traditionally been based on initial material cost. However, growing pressure on the construction industry to consider the longer-term financial and environmental implications of projects is encouraging a more holistic view. Thus, materials with higher initial costs, but which offer cost savings over the life cycle of a structure, are gaining increasing recognition. The life-cycle costs of structures of two such metallic materials, namely aluminium alloy and stainless steel, are compared with those of ordinary structural carbon steel in the present study. Two structural applications—a typical office building and a bridge—are analysed, while offshore applications are briefly discussed. The ratio of initial material cost per tonne was assumed to be 1·0:2·5:4·0 (carbon steel:aluminium alloy:stainless steel). Following a preliminary structural design to current European design standards taking due account of the material densities and structural properties (principally strength and stiffness), it was found that on an initial cost basis, carbon steel offers the most competitive solution for both the building and the bridge. However, considering the additional life-cycle costs including maintenance costs, end-of-life costs and the residual value of the structure (appropriately discounted to present values), the results indicate that carbon steel offers the most competitive life-cycle solution for the office building but delivers the most expensive life-cycle solution for the bridge. Overall, it is concluded that on a whole-life basis aluminium alloy and stainless steel may offer more competitive solutions than carbon steel for bridges and exposed areas of building structures.

Publisher

Thomas Telford Ltd.

Subject

Civil and Structural Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3