Hybrid SrMoO4@rGO electrocatalyst for hydrogen evolution reaction in acid medium

Author:

Kunhiraman Aruna K1,Rahees Puthalath Muhammad1,Ajay Rakkesh R2

Affiliation:

1. Rathinam Research Centre, Rathinam Technical Campus, Coimbatore, TN, India

2. Functional Nanomaterials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, TN, India

Abstract

This work examined strontium molybdate (SrMoO4) spindle particles decorated on reduced graphene oxide (SrMoO4@rGO) as hydrogen-evolving electrocatalysts in acid-water electrolytes. A facile solvothermal method was employed for the preparation of SrMoO4@rGO. The phase formation and presence of reduced graphene oxide (rGO) were confirmed using X-ray diffraction, and the morphology was determined by transmission electron microscopy and field emission scanning electron microscopy. The electrochemical hydrogen evolution reaction (HER) activity of the developed material was studied using various voltammetric techniques in a three-electrode cell system in an acidic environment. A comparative study of HER activity among strontium molybdate, SrMoO4@rGO and 20 wt.% platinum (Pt)/carbon (C) was done. An increased rate of hydrogen evolution was observed for SrMoO4@rGO compared with that of freestanding strontium molybdate.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3