Design technique co-optimization approach to GAA FETs for inverter design at advanced technology node

Author:

Mohapatra Eleena1,Jena Jhansirani2,Jena Devika2,Das Sanghamitra3,Dash Taraprasanna2

Affiliation:

1. Department of ECE, RV College of Engineering, Bengaluru, Karnataka, India

2. Department of ECE, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India

3. Department of ECE, Silicon Institute of Technology, Bhubaneswar, India

Abstract

Gate-all-around Nanosheet field-effect transistor (GAA-NSFET) is a potential replacement for the state-of-art FinFET devices at advanced technology nodes. In this article, the impact of process-induced variability such as gate work function variation (WFV) on NSFETs using 3D TCAD numerical device simulation is studied. The WFV of NSFETs and NWFETs using multiple stack channels are also analyzed. The fluctuation in the threshold voltage (σVTH) and on-current (σION) of NSFETs is mainly affected by the WFV of the metal gate. It is investigated that single and 3-stacked NSFET shows superior immunity to WFV compared to NWFET. Furthermore, a layout-based NSFET inverter design using the DTCO technique is followed and the advantages of the stacked NSFET in terms of delay, power dissipation and switching energy are also reported.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Energy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3