Optimised performance of ultrahigh-performance silicomanganese slag concrete by water glass immersion

Author:

Luo Baifu1,Wang Dong2,Elchalakani Mohamed3

Affiliation:

1. Senior Lecturer, Xiangtan University, Xiangtan, China (corresponding author: )

2. Master's student, Xiangtan University, Xiangtan, China

3. Assistant Professor, University of Western Australia, Perth, Australia

Abstract

Silicomanganese slag (SS) is a byproduct of the ferroalloy industry. It causes environmental pollution and consume resources. In this study, water glass immersion was used to improve the performance of SS, which was utilised in the production of ultrahigh-performance concrete (UHPC). The results show that SS treated with a 2% water glass concentration for 24 h had 16 MPa higher compressive strength for composite than pure UHPC. Additionally, the treated composite had approximately half the mass and compressive strength losses of pure UHPC after freeze–thaw testing, indicating that the treatment had a significant positive effect on the freeze–thaw resistance of ultrahigh-performance silicomanganese slag concrete (UHPSSC). Microstructural analysis also showed that water glass immersion optimised the morphology of UHPSSC, contributing to improved mechanical performance and freeze–thaw resistance of the composite.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3