Early residual splitting tensile strength of concrete at elevated temperature

Author:

Shan Zhiwei1,Wu Zhuoya2,Lo Sai Huen3,Su Ray Kai Leung4

Affiliation:

1. Assistant Professor, China–Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures, Southeast University, Nanjing, China

2. PhD student, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

3. Professor, Hong Kong Quantum AI Lab Limited, NT, Hong Kong, China

4. Associate Professor, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China (corresponding author: )

Abstract

Assessment of the fire-induced spalling of high-strength concrete in concrete structures requires knowledge of the tensile strength of concrete at an elevated temperature. However, previous research has mainly focused on determining residual tensile strength, measured at the post-fire stage after cooling the specimens to ambient temperature. However, such residual tensile strength is only applicable to concrete after fire exposure and not during the fire event, which is usually more critical. In this study, the early residual splitting tensile strength of concrete at high temperature is determined experimentally. The test results indicate that early residual splitting tensile strength decreases with temperature. To understand this phenomenon, temperature distribution is examined. Compared to residual tensile strength, loss of early residual splitting tensile strength is found to be faster due to the elevated temperature effect. Lastly, in order to reproduce early residual splitting tensile strength, a numerical model is developed and empirical expressions are proposed for engineering application.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3