Optimising internal curing parameters for autonomous curing of normal-strength concrete

Author:

Atsbha Tesfaalem Gereziher1,Zhutovsky Semion2

Affiliation:

1. Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa, Israel (corresponding author: )

2. Faculty of Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa, Israel

Abstract

Autogenous curing, also known as internal curing (IC), has revolutionised the way high-performance concrete (HPC) and high-strength concrete (HSC) are cured. IC improves the service life of concrete by lowering early-age cracking and enhancing durability. However, normal-strength concrete (NSC), the most commonly used type in the industry, is typically cured using conventional methods. Researchers are thus looking at ways to reproduce the positive results found in internally cured HSC/HPC in NSC. Studies have shown that IC is feasible in NSC despite its higher permeability, which results in loss of internal curing water (ICW). However, no comprehensive study has attempted to assess how the type, size and amount of IC agents affect the properties of NSC. The aim of this work was thus to optimise IC parameters for autonomous curing of NSC. The findings of this study support the notion that IC is possible in concrete with a high water/cement ratio and that, compared with lightweight aggregates (LWAs), superabsorbent polymers significantly impacted the durability properties of the NSC. Moreover, varying the size of the IC agent (LWA) had little effect on NSC properties, while increasing the amount of ICW considerably improved the durability properties.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Reference79 articles.

1. ACI (American Concrete Institute) (2008) 308R-01: Guide to curing concrete. ACI, Farmington Hills, MI, USA.

2. ACI (2014) ACI PRC-213-14: Guide for structural lightweight-aggregate concrete. ACI, Farmington Hills, MI, USA.

3. Effects of distribution of lightweight aggregates on internal curing of concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3