Wind and earthquake protection of cable-supported bridges

Author:

Domaneschi Marco1,Martinelli Luca1,Perotti Federico1

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Abstract

This paper deals with control strategies for the mitigation of unwanted vibrations in typical medium and long-span cable-supported bridges, aiming to underline general observations and side effects related to the adoption of different control strategies. Two finite-element models of medium and long-span bridges, namely a suspension and a cable-stayed bridge, are developed for simulating the structural response under wind and earthquake excitation. Passive and semi-active control strategies are then implemented in the models for mitigating dynamic effects. Such control schemes have been designed for wind excitation on the suspension bridge, and seismic excitation on the cable-stayed bridge. Attention is initially focused on high-intensity loading conditions, having a low probability of occurrence. The same control strategies and arrangements have then been re-assessed by changing the input intensity; in addition, a cross-check has been performed by addressing earthquake actions on the suspension bridge and wind forces on the cable-stayed bridge. The results have been also analysed in terms of indirect effects, such as fatigue damage.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3