The in situ potential of synthetic nano-hydroxyapatite for tooth enamel repair

Author:

Ince S Gokce1,Banu Ermis R2ORCID

Affiliation:

1. Department of Restorative Dentistry, Oral and Dental Health Center, Izmir, Turkey

2. Department of Restorative Dentistry, Hamidiye Faculty of Dental Medicine, University of Health Sciences, Istanbul, Turkey

Abstract

This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Twenty-one subjects participated in this single-blind, randomized, cross-over design study with three 7-day treatment phases. In each phase, the subjects wearing a palatal appliance containing five sterilized enamel specimens used either one of the two test regimens (1% nano-hydroxyapatite toothpaste and 2.25% nano-hydroxyapatite/1450 parts per million (ppm) fluoride toothpaste) or one control (1400 ppm fluoride toothpaste). Enamel specimens were extraorally demineralized (4 × 5 min/day) and were intraorally treated with the toothpastes (2 × 2 min/day). The nano-hydroxyapatite toothpaste groups exhibited significantly higher surface microhardness than did the standard fluoride toothpaste group (p < 0.05). Enamel surface hardness was increased only by nano-hydroxyapatite toothpastes after in situ treatment compared with the baseline (p < 0.05). Morphological analysis demonstrated an apatite-type crystal deposition on the eroded enamel surface produced by nano-hydroxyapatite toothpastes, while fluoride toothpaste failed to show any significant surface deposition. Chemical analysis showed a higher content of calcium and phosphorus in the enamel surface treated with nano-hydroxyapatite toothpastes compared with that in the control one (p < 0.05). It is concluded that home use of nano-hydroxyapatite containing toothpastes may have a protective effect against erosion at the enamel surface.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3