Inspired by mussel: biomimetic polyelectrolyte complex coacervate adhesive initiates a connection through water exchange

Author:

Wang Guilong1,Hu Zhen-Feng1,Liang Xiu-Bing1,Chen Fu-Xue2

Affiliation:

1. Defense Innovation Institute, Academy of Military Science, Beijing, China

2. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China

Abstract

Here the authors report a versatile and strong underwater adhesive that was inspired by the chemical features of mussel foot proteins. A random copolymer (poly(N-(3,4-dihydroxyphenethyl)methacrylamide-co-methacryloxyethyltrimethyl ammonium chloride-co-acrylamide) (PDMA)–Tf2N) was prepared that contained side-chain catechol groups and quaternary ammonium cations that were ion-paired with bis(trifluoromethane-sulfonyl)imide anion (Tf2N). After dissolving PDMA–Tf2N and poly(acrylic acid) in dimethyl sulfoxide, a polyelectrolyte complex coacervate adhesive (P2) could be formed, which could be triggered through solvent exchange. P2 exhibited outstanding underwater shear strength to various substrate surfaces. After a critical curing time (t s = 10 min), the adhesion strength of P2 to glass increased sharply up to 187.298 kPa (t s = 40 min).

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Award-winning paper in 2022;Bioinspired, Biomimetic and Nanobiomaterials;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3