Shape encoding for semantic healing of design models and knowledge transfer to scan-to-BIM

Author:

Collins Fiona C1ORCID,Ringsquandl Martin2ORCID,Braun Alexander1ORCID,Hall Daniel M3ORCID,Borrmann Andre1ORCID

Affiliation:

1. Technical University of Munich, Munich, Germany

2. Corporate Technology, Siemens AG, Munich, Germany

3. ETH Zurich, Zurich, Switzerland

Abstract

Automated parsing of design data will increasingly be a prerequisite for efficient data- and analytics-driven management of building portfolios. The high complexity and low rigidity of building information modelling (BIM) model exchange standards such as Industry Foundation Classes result in considerable differences in data quality and impede direct data availability for analytics-based decision support. Mis- or unclassified building elements are a common issue and can lead to tedious manual reworks. At the same time, scan-to-BIM processes still require considerable manual effort to identify subclass element geometry. This work leverages the benefits of a three-dimensional lightweight, geometric algorithm to generate meaningful geometric features autonomously that assist shape classification in erroneous design models and pre-segmented point clouds. Geometric deep learning is introduced in two steps; a discussion about the benefits of graph convolutional networks (GCNs) is given before a set of experiments on BIM element data sets is conducted. Utilising explainable artificial intelligence methods, the GCN performance is made suitable for human–algorithm interaction. Leveraging element geometry solely, the classification reaches a promising average performance of above 83% for the model-healing task with a reduced computation time. The encoded geometric knowledge from the design models is shown to be helpful in showcasing examples of segment classification in point clouds.

Publisher

Thomas Telford Ltd.

Subject

General Health Professions

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3