Shear behaviour of ultra-high-performance fibre-reinforced concrete beams without stirrups

Author:

Yang In-Hwan1,Joh Changbin2,Kim Byung-Suk3

Affiliation:

1. Professor, Kunsan National University, Department of Civil Engineering, Kunsan, Jeonbuk, Korea

2. Research Fellow, Korea Institute of Construction Technology, Structural Engineering Research Division, Goyang, Gyeonggi, Korea

3. Senior Research Fellow, Korea Institute of Construction Technology, SOC Research Institute, Goyang, Gyeonggi, Korea

Abstract

The experimental results of shear strength and deformation tests for 12 ultra-high-performance fibre-reinforced concrete (UHPFRC) beams without stirrups are presented in this paper. I-beam specimens with a depth of 700 mm were cast using UHPFRC with the compressive strength of 160–190 MPa. The experimental parameters were the shear span to effective depth ratio, the volume fraction of steel fibres, and the presence or absence of prestress. The failure mode, indicating tensile failure in the web of the beam, was accompanied by fibre pull-out along the major diagonal crack. The test results indicated that the first cracking and ultimate shear strengths increased as the volume fraction of steel fibres increased. The ultimate shear strength decreased as the shear span to effective depth ratio increased. The increase in ultimate shear strength resulted from the instability of arch action at the shear span to effective depth ratio. In addition, the ultimate shear strength of prestressed beams increased compared with that of non-prestressed beams. The test results of this study provide valuable data that can be used in future studies to develop computational models of the shear behaviour of UHPFRC.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3