Shear creep behaviour of soil–structure interfaces under thermal cyclic loading

Author:

Golchin A.1,Guo Y.21,Vardon P. J.1ORCID,Liu S.2,Zhang G.2,Hicks M. A.1

Affiliation:

1. Section of Geo-engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands.

2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu, P. R. China.

Abstract

The coupling effect of initial shear stress and thermal cycles on the thermomechanical behaviour of clay concrete and sand–concrete interfaces has been studied. A set of drained monotonic direct shear tests was conducted at the soil–concrete interface level. Samples were initially sheared to half of the material's shear strength and then they were subjected to five heating/cooling cycles before being sheared to failure. The test results showed that the effect of thermal cycles on the shear strength of the materials was negligible, yet shear displacement occurred during application of thermal cycles without an increase in shear stress, confirming the coupling between the shear stress and temperature. In addition, a slight increase of stiffness due to the coupling was observed which diminished with further shearing.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3