Laboratory assessment of rubber grid-reinforced ballast under impact testing

Author:

Siddiqui A. R.1,Indraratna B.2,Ngo T.1,Rujikiatkamjorn C.3

Affiliation:

1. Transport Research Centre, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Sydney, Australia; ARC Industrial Transformation Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail).

2. Transport Research Centre, University of Technology Sydney, Ultimo, Australia; ARC Industrial Transformation Training Centre for Advanced Technologies in Rail Track Infrastructure (ITTC-Rail).

3. Transport Research Centre, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia.

Abstract

This study presents the use of rubber grids (RGs) fabricated from end-of-life conveyor belts (i.e. discarded from the mining industry) to improve the performance of ballast tracks. The square apertures of these recycled rubber sheets were cast using a waterjet cutting process. A series of large-scale impact tests were performed on ballast specimens stabilised with three different grids of varied effective area ratios (KA.eff) to evaluate their effectiveness in mitigating the applied impact forces, in relation to both displacement and breakage of the ballast aggregates. Smart Ballast particles with motion-sensing capabilities were adopted to monitor the interaction between the grid and ballast assembly. The impact test results indicate that the inclusion of a RG decreases the deformation and breakage of ballast as well as reduces its vibrations. This study demonstrates that these recycled RGs with optimum effective area ratios can be more effective than conventional polymer geogrids, apart from the obvious environmental benefits.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3