Energy system impacts from heat and transport electrification

Author:

Baruah Pranab J.1,Eyre Nicholas2,Qadrdan Meysam3,Chaudry Modassar4,Blainey Simon5,Hall Jim W.6,Jenkins Nicholas7,Tran Martino8

Affiliation:

1. Researcher (energy), Environmental Change Institute, University of Oxford, UK

2. Energy Programme Leader and Senior Research Fellow, Environmental Change Institute, University of Oxford, UK

3. Research Associate, Department of Electrical and Electronic Engineering, Imperial College, London, UK

4. Research Associate, Institute of Energy, Cardiff University, UK

5. Lecturer, Faculty of Engineering and the Environment, University of Southampton, UK

6. Director and Professor, Environmental Change Institute, University of Oxford, UK

7. Director and Professor, Institute of Energy, Cardiff University, UK

8. Senior Research Fellow, Environmental Change Institute, University of Oxford, UK

Abstract

Electrifying the energy system and powering it by low carbon electricity is one of the key decarbonisation pathways of the energy system. This study examines annual electricity and gas consumption in a high electrification scenario in Great Britain (GB) and the implications for electricity generation and transmission infrastructure using a suite of soft-linked models. High electrification of heating and transport services, which are two major fossil fuel consumers in GB, increases annual electricity consumption and peak electricity load by 35% and 93%, respectively, by 2050 while reducing overall annual energy consumption compared to a reference case. Meeting this high electricity consumption with a supply strategy that is dependent on offshore wind could more than double the supply-side investments required compared to a reference case, if demand-side measures are not available. High electrification would also impact existing gas and oil energy infrastructure by reducing consumption of these fuels. It was found that uncertainties in socio-economic growth can amplify these implications and therefore need serious consideration by analysts and policymakers involved in designing energy transition strategies. A case study and discussion demonstrate that smart-grid aided demand-side management has the potential to minimise electricity peak load and infrastructure requirements from high electrification.

Publisher

Thomas Telford Ltd.

Subject

General Energy

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3