Role of distributed storage in a 100% renewable UK network

Author:

Alexander Marcus Joseph1,James Patrick2

Affiliation:

1. EngD Researcher, Faculty of Engineering and Environment, University of Southampton, Southampton, UK

2. Professor of Energy and Buildings, Faculty of Engineering and Environment, University of Southampton, Southampton, UK

Abstract

This study considers generation and demand challenges of a 100% renewable UK electricity grid and poses the question whether this can be addressed through the use of distributed energy storage. To explore this issue, hourly demand and electricity generation profiles for a year have been constructed for a variety of renewable sources and demand scenarios. Alongside baseline projections, further scenarios have been produced that include extensive uptake of electric heat pumps for domestic heating and hot water, as well as moderate uptake of electric vehicles. It is proposed that these technologies are used on a local scale to help integrate the additional renewable electricity generated within a predetermined zone of the electricity network. Analysis has been carried out to determine the pinch points in the UK network where renewable electricity generation is greater than local electricity demand. From this, consideration has been given to understanding the real impact distributed energy storage in the form of heat pumps and electric vehicles can have in helping balance a 100% renewable UK electricity grid. Initial results have found that, depending on the demand scenario and location on the network, there is the potential to accommodate up to 50% of the excess electricity generated.

Publisher

Thomas Telford Ltd.

Subject

General Energy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3