Lipophilic nano-bismuth inhibits bacterial growth, attachment, and biofilm formation

Author:

Badireddy Appala Raju12,Marinakos Stella M.3,Chellam Shankararaman4,Wiesner Mark R.12

Affiliation:

1. Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA

2. Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC, USA

3. Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC, USA

4. Departments of Civil and Environmental Engineering and Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA

Abstract

There is an urgent need for low-cost and low-toxicity antimicrobial agents for water treatment and medical applications. Current approaches utilize relatively expensive and corrosive chemicals and disinfectants to reduce, prevent or remove biofilms in technological systems. Nanoparticle-based approaches are sought increasingly to develop disinfection systems and self-cleaning surfaces that could ‘seek and destroy’ microorganisms. In this context, the authors have developed novel lipophilic bismuth dimercaptopropanol (BisBAL) nanoparticles using a simple aqueous reduction reaction with sodium borohydride at room temperature. The objective of this study was to assess the effect of BisBAL nanoparticles on growth, attachment and biofilm formation by Pseudomonas aeruginosa. Characterization of nanoparticles showed them to be very lipophilic, with a rhombohedral crystalline structure and crystallite size of approximately 18 nm. When introduced at or above the minimum inhibitory concentration (MIC = 12·5 µM), the growth of bacteria was completely inhibited for at least 30 d. The authors show that lipophilic BisBAL nanoparticles at the MIC inhibited bacterial attachment to track-etched polycarbonate membrane surfaces and lysed bacteria embedded in biofilms, within 1 h of exposure. The authors conclude that lipophilic bismuth nanoparticles are promising antimicrobial agents, that have the capability to inhibit growth, prevent bacterial attachment to surfaces or damage existing biofilms.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3