Effects of technological voids and hydration time on the hydro-mechanical behaviour of compacted bentonite/claystone mixture

Author:

Zeng Zhixiong1ORCID,Cui Yu-Jun1,Conil Nathalie2,Talandier Jean3

Affiliation:

1. Ecole des Ponts ParisTech, Laboratoire Navier/CERMES, Marne La Vallée, France.

2. Andra, Centre de Meuse/Haute-Marne, Bure, France.

3. Andra, Châtenay-Malabry, France.

Abstract

Pre-compacted MX80 bentonite/Callovo-Oxfordian (COx) claystone mixture has been considered as a promising sealing/backfilling material in deep geological repository for high-level radioactive waste in France. When the pre-compacted blocks are emplaced in the gallery, technological voids can remain. After the infiltration of groundwater from the host rock, they will swell freely, filling the technological voids, and then undergo further hydration under constant-volume conditions. From the perspective of the storage safety, it is essential to understand the effects of technological voids and hydration time on the hydro-mechanical behaviour of such pre-compacted blocks. In this work, a series of infiltration tests at various hydration times was carried out on compacted MX80 bentonite/COx claystone mixture with different technological voids. The evolutions of the swelling pressures in axial and radial directions as well as the hydraulic conductivity were monitored while wetting. After the predetermined hydration times, the dry density, water content and suction at different positions were determined, together with the microstructure investigation using mercury intrusion porosimetry. It was observed that the soils close to initial voids swelled and filled the initial voids upon contact with water, with significant increases in large-pore and medium-pore void ratios. From the variation of dry density profile with time, compression and swelling zones could be identified: in the compression zone, the soils corresponding to the initial soils were subjected to compression, with decrease in large-pore and medium-pore void ratios over time, whereas in the swelling zone, the soils with a higher dry density than the expected final one underwent further swelling, with large-pore void ratio increasing until saturation and then a slight decrease due to water redistribution in the soil. Owing to the soil density heterogeneity, the axial swelling pressure and hydraulic conductivity of samples with voids were slightly larger than those of samples without voids; contrarily, the radial swelling pressure was lower than that of the samples without voids.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3