Experimental investigation of kinematic pile bending in layered soils using dynamic centrifuge modelling

Author:

Garala Thejesh Kumar1ORCID,Madabhushi Gopal S. P.2ORCID,Di Laora Raffaele3

Affiliation:

1. Schofield Centre, Department of Engineering, University of Cambridge, UK.

2. Department of Engineering, University of Cambridge, UK.

3. Department of Engineering, Università della Campania Luigi Vanvitelli, Aversa, Italy.

Abstract

This research provides an insight into the previously unexplored aspects of kinematic pile bending, especially for large-intensity earthquakes where the soil behaviour is highly non-linear. In this study, a series of dynamic centrifuge experiments was conducted on pile foundations embedded in a two-layered soil profile to investigate the kinematic effects on pile foundations during model earthquakes. A single pile and a closely spaced 3 × 1 row pile group were used as model pile foundations, and the soil model consisted of a soft clay underlain by dense sand. It was observed that the peak kinematic pile bending moment occurs slightly beneath the interface of the soil layers and this depth is larger for the pile group compared to a single pile. Also, the piles in a group attract lower bending moments but carry larger residual kinematic pile bending moments compared to a single pile. Furthermore, the elastic solutions available in the literature for estimating the kinematic pile bending moments are shown to yield satisfactory results only for small-intensity earthquakes, but vastly underestimate for large-intensity earthquakes, if methods are applied injudiciously. The importance of considering soil non-linearity effects and accurate determination of shear strain at the interface of layered soils during large-intensity earthquakes for a reliable assessment of kinematic pile bending moment from methods in the literature is demonstrated using dynamic centrifuge test data.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference40 articles.

1. Behavior of Pile Foundations in Laterally Spreading Ground during Centrifuge Tests

2. Evaluation of Shear Modulus and Damping in Dynamic Centrifuge Tests

3. Darendeli, M. B. (2001). Development of a new family of modulus reduction and material damping curves. PhD dissertation, University of Texas Austin, Austin, TX, USA.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3