Improvements in plate anchor capacity due to cyclic and maintained loads combined with consolidation

Author:

Zhou Zefeng1ORCID,O'Loughlin Conleth D.1,White David J.2,Stanier Sam A.3

Affiliation:

1. Centre for Offshore Foundation Systems and ARC Research Hub for Offshore Floating Facilities, University of Western Australia, Perth, WA, Australia.

2. University of Southampton, Southampton, UK and ARC Research Hub for Offshore Floating Facilities, University of Western Australia, Perth, WA, Australia.

3. University of Cambridge, Cambridge, UK and ARC Research Hub for Offshore Floating Facilities, University of Western Australia, Perth, WA, Australia.

Abstract

Plate anchor technology is an efficient solution for mooring offshore floating facilities for oil and gas or renewable energy projects. When used with a taut mooring, the anchor is typically subjected to a maintained load component and intermittent episodes of cyclic loading throughout the design life. These loads, and the associated shearing, remoulding and consolidation processes, cause changes in the anchor capacity, particularly in soft, fine-grained soils. The changing anchor capacity affects the mooring performance by changing the safety margin and also the overall system reliability. In this paper the changing anchor capacity in reconstituted, normally consolidated natural carbonate silt was assessed through a series of beam centrifuge tests on horizontally loaded circular plate anchors. The results demonstrate that full consolidation under a typical maintained load leads to a 50% gain in the anchor capacity, and subsequent cyclic loading and reconsolidation can triple this increase. An effective stress framework based on critical state concepts is employed to explain and support the experimental observations. This study shows that, when viewed from a whole-life reliability perspective, maintained and cyclic loading provide a long-term enhancement of anchor capacity in soft, fine-grained soils. This beneficial effect is currently overlooked in design practice, but can be predicted using the framework shown here, which can form the basis for a digital twin that monitors the through-life integrity of a plate anchor.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3