Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand

Author:

Jostad Hans Petter1,Dahl Birgitte Misund1,Page Ana1,Sivasithamparam Nallathamby1,Sturm Hendrik1

Affiliation:

1. Norwegian Geotechnical Institute (NGI), Oslo, Norway.

Abstract

In order to perform optimised and safe design of foundations for offshore wind turbines (OWT), it is important to have calculation tools that describe the key features of water-saturated soil subjected to complex and irregular loading over a wide range of strain levels. Soils subjected to cyclic loading are prone to strain accumulation. The accumulated (plastic) volumetric strain may result in excess pore pressure or stress relaxation, which will reduce the effective stresses, stiffness and strength of the material. Strain accumulation in dense sand is a complex mechanism of deformation and it is challenging to describe it properly. Four different soil models to describe the stress–strain relationships of dense sand are evaluated in this paper: two implicit models that follow the actual stress history and two explicit models that calculate the accumulated strains as a function of number of cycles. These models are first evaluated on the basis of their theoretical framework and back-calculations of laboratory tests specifically carried out for the design of OWT foundations in dense sand. Second, the models are implemented in finite-element analyses and evaluated on the basis of the analyses of an OWT monopile subjected to different loading conditions.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3