Fungal-induced water repellency in sand

Author:

Salifu Emmanuel1ORCID,El Mountassir Gráinne2

Affiliation:

1. Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, UK; Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli, Federico II, Italy.

2. Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow, UK.

Abstract

Water infiltration into granular soils and the associated pore water pressure increase and reduction in shear strength can trigger landslides, instability of vertical cuts and failure of retaining walls. Water-repellent soils can reduce infiltration to maintain soil suction. Recent research has demonstrated the creation of synthetic water-repellent soils using chemical methods. This paper investigates a biological treatment for creating water-repellent sand by way of the growth of the fungus Pleurotus ostreatus. Water repellency was assessed using: (a) the water drop penetration test; (b) the molarity of ethanol drop test; and (c) the modified sessile drop method with contact angle (θ) determination by way of image analysis. Fungal-induced water repellency was found to be ‘extreme’ (θ > 110°) up to 4 weeks and ‘severe’ (θ > 105°) up to 12 weeks, even with no further supply of moisture or nutrients. A water-repellent layer was formed and maintained in saturated conditions, which is difficult to achieve using chemical methods.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3