Seismic vulnerability of circular tunnels in sand

Author:

de Silva Filomena1ORCID,Fabozzi Stefania2ORCID,Nikitas Nikolaos3ORCID,Bilotta Emilio1ORCID,Fuentes Raul4ORCID

Affiliation:

1. University of Naples Federico II, Naples, Italy.

2. National Research Council, Rome, Italy.

3. University of Leeds, Leeds, UK.

4. University of Leeds, Leeds, UK; Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos, Universitat Politècnica de València, Spain.

Abstract

The paper is focused on the assessment of seismic fragility curves for circular tunnels under moderate to severe earthquakes with the aim of improving the reliability of the risk assessment of underground infrastructural networks. Non-linear two-dimensional dynamic analyses were performed on different tunnel and soil configurations by using the finite-difference method implemented in Flac2D software. The applied input motions were selected considering their amplitude and frequency content variability. The response accelerations and predominant frequencies computed at ground level, above the tunnel, were compared with the corresponding free-field results to distinguish the effects attributable to the tunnel presence from those due to the site amplification. Tunnel safety was assessed through fragility curves, taking into account the dependence of tunnel lining bending resistance on the axial force variation during the earthquake. The more effective intensity measure was investigated correlating the tunnel performance to peak ground accelerations and peak ground velocities computed at the ground level and at the bedrock depth, respectively. The resulting fragility curves showed a satisfying matching with the empirical ones, generated on the basis of the observed seismic damage on tunnels.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3