Effect of partial replacement of cement with slag on the early-age strength of concrete

Author:

Tang Kangkang1,Khatib Jamal2,Beattie Greg3

Affiliation:

1. University of Wolverhampton, Wolverhampton, UK (corresponding author: )

2. Department of Civil and Environmental Engineering, Beirut Arab University, Beirut, Lebanon

3. Arup, Liverpool, UK

Abstract

Concrete structures are popularly used to provide open space areas that are often incorporated into the design of sports, social and industrial structures. One of the concerns with concrete structures, especially long-span concrete structures, is early-age thermal expansion and subsequent contraction as a result of the exothermic cement hydration reaction. Thermal contraction, externally restrained by vertical structural elements such as columns and shear walls, may cause thermal cracking if it exceeds the tensile strength of the concrete. The early-age thermal loading of cast-in-place concrete can be estimated through isothermal calorimetry, semi-adiabatic calorimetry and finite-element modelling. This paper discusses the efficiency of using finite-element modelling, based on the isothermal calorimetry results, for predicting early-age temperature development of in situ concrete. In addition, this work quantifies the beneficial effect of using ground granulated blast-furnace slag as a partial replacement of cement in structural concrete. The simulation results, validated via semi-adiabatic calorimetry, indicate reduced thermal loading due to the presence of slag. This can be taken as an advantage of using such slag in structural concrete.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite element modeling of early-age temperature development of in-situ concrete under variable ambient temperatures;Materials Today: Proceedings;2023-08

2. Ability of the R3 test to evaluate differences in early age reactivity of 16 industrial ground granulated blast furnace slags (GGBS);Cement and Concrete Research;2020-04

3. Properties of SCC at elevated temperature;Self-Compacting Concrete: Materials, Properties and Applications;2020

4. Characteristics of concrete containing EPS;Use of Recycled Plastics in Eco-efficient Concrete;2019

5. Editorial;Proceedings of the Institution of Civil Engineers - Structures and Buildings;2017-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3