Geostatic stress in oil-sand tailings

Author:

Shuttle Dawn1ORCID,Martens Scott2,Jefferies Mike3ORCID

Affiliation:

1. Formerly Klohn Crippen Berger, Calgary, Canada; now Retired, Vancouver, Canada (corresponding author: )

2. Formerly Klohn Crippen Berger, Calgary, Canada; now Canadian Natural Resources Ltd, Calgary, Canada

3. Retired, Vancouver, Canada

Abstract

Horizontal geostatic stress estimated from self-bored pressuremeter (SBP) data using the ‘lift off’ method is uncertain because of even small deficiencies in self-boring, but that uncertainty can be minimised by modelling the complete test. Iterative forward modelling based on large-strain cavity expansion in frictional dilating (non-associated Mohr–Coulomb) soil, with correction for finite SBP geometry, is both easily implemented in a spreadsheet and computes quickly. Such modelling of a campaign of SBP tests in oil-sand tailings shows a baseline geostatic stress ratio K0 = 0.6 for those tailings that are truly normally consolidated. Other geological history factors, including compaction by tracking and wetting–drying cycles, adds about a Δσh ≈ 60 kPa ‘locked-in’ stress to this normally consolidated trend; an alternative view is that these factors produce K0 ≈ 1. The modelling spreadsheet is provided as a downloadable Excel application in the online supplementary material.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3